

#### Effective: Fall 2024

| COURSE INF    | ORMATION                         |                             |                                  |                                                                    |                                             |
|---------------|----------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| Course Title: | Introduction to Linea            | r Algebra                   | Course Number:                   | MATH 232                                                           | Credits: 3                                  |
| Total Weeks:  | 14 (Fall, Spring)<br>12 (Summer) | Total Hours: 39             | Course Level:                    | <ul> <li>First Year</li> <li>New</li> <li>Replacement (</li> </ul> | ⊠ Second Year<br>□ Revised Course<br>Course |
| Department:   | Mathematics                      | Department Head: G. Belchev | Former Cours                     | e Code(s) and Nur                                                  | nber(s) (if applicable): N/A                |
|               | 1.6.1                            |                             | • • • <del>• •</del> • • • • • • |                                                                    |                                             |

Pre-requisites (If there are no prerequisites, type NONE): MATH 101 or MATH 111

Co-requisite Statement (List if applicable or type NONE): NONE

Precluded Courses: N/A

### COURSE DESCRIPTION

This is a first course in linear algebra. Topics include matrix arithmetic and linear equations and determinants; real vector spaces and linear transformations; inner products and orthogonality; Eigenvalues and Eigenvectors.

### LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- 1. Linear systems
  - a. Solve linear systems using row reduction.
  - b. Find the rank of a matrix.
  - c. Answer questions regarding the existence and uniqueness of solutions of linear systems.
  - d. Understand how systems are used to solve problems in science, business and engineering.
  - e. Find the inverse of a matrix using row-reduction.
  - f. Express a system of equations as a vector equation and as a matrix equation and vice versa.
  - g. Solve a system with n equations and n unknowns using
    - i. Cramer' rule
    - ii. The inverse of the coefficient matrix
- 2. Matrices and matrix operations
  - a. Understand the terms square matrix, symmetric matrix, zero matrix, diagonal matrix, triangular matrix and identity matrix.
  - b. Perform the operations of addition, subtraction, scalar multiplication, multiplication, transpose and inverse of a matrix, and apply the properties of these operations to solve matrix equations.
- 3. The subspaces of R<sup>2</sup>, R<sup>3</sup> and R<sup>n</sup>
  - a. Geometric method of vector addition, subtraction, scalar multiplication.
  - b. Understand linear combinations and span of a set of vectors.
  - c. Describe the subspaces of R<sup>2</sup> and R<sup>3</sup>.
  - d. Find the vector equation and parametric equations of a line and a plane in R<sup>3</sup>.
  - e. Solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, bases and dimension in *R*<sup>*n*</sup>.



# **COURSE OUTLINE**

- f. Find a basis and the dimension of the column space and the null space of a matrix.
- g. Understand the connection between bases and coordinate systems and find the coordinates of a vector relative to a given basis.
- 4. Inner product, length, distance, angle and orthogonality
  - a. Apply the basic properties of the dot product and use the dot product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality in R<sup>n</sup>
  - b. Find a linear equation for a plane in R<sup>3</sup> using a point on the plane and normal vector to the plane.
  - c. Calculate the orthogonal projection of one vector onto another in *R*<sup>*n*</sup>.
  - d. Use orthogonal projection to find distance of a point from a line and from a plane in  $R^3$ .
  - e. Explain the terms standard basis, orthogonal basis and orthonormal basis and be able to convert a basis into an orthonormal basis using the Gram-Schmidt Process (max of three vectors) in in *R*<sup>n</sup>.
  - f. Find the orthogonal projection of a vector **y** onto a given subspace S of *R*<sup>*n*</sup> and find the vector in *S* that is closest to **y**.
  - g. Determine the set of least-squares solutions of a given inconsistent linear system.
- 5. Linear transformations from  $R^n$  to in  $R^m$ 
  - a. Determine the matrices that describe rotation, shear, dilation or contraction and reflection in  $R^2$ .
  - b. Matrix transformations, domain, codomain, standard matrix, kernel, range, one-to-one, onto, linearity. Explain these terms in terms of rotation, reflection, etc.
  - c. Determine whether a given transformation from  $R^n$  to in  $R^m$  is linear.
  - d. Determine the standard matrix for a linear transformation from  $R^n$  to in  $R^m$ .
  - e. Form composite of linear transformations.
  - f. Determine the kernel, range, rank and nullity of a linear transformation.
  - g. Determine if a linear transformation is one-to-one.
  - h. Determine if a linear transformation is onto.
  - i. Determine if a linear transformation is invertible, and if it is, find its inverse.
- 6. Determinants
  - a. Calculate determinants using row operations, column operations, and expansion down any column and across any row.
  - b. Solve a system using Cramer's Rule.
  - c. Find the inverse of a matrix using the adjoint of the matrix.
  - d. Find the volume of a parallelepiped.
  - e. Prove and apply the basic properties of the determinant of a matrix.
  - f. Prove and apply the basic properties of the cross product and use the cross product to calculate the area of a triangle and the volume of a parallelepiped.
- 7. Eigenvalues and eigenvectors
  - a. Find the characteristic polynomial, eigenvalues and eigenspaces of a square matrix and determine whether the matrix is diagonalizable.
  - b. Find the powers of a diagonalizable matrix.
  - c. Solve problems in population dynamics.
  - d. Solve linear systems of differential equations.
- 8. Proofs:

Be able to put together a mathematical argument in order to prove simple facts about vectors, matrices, determinants, dot products, length, projection, linear independence, subspaces and linear transormations.

### **INSTRUCTION AND GRADING**



## **COURSE OUTLINE**

Instructional (Contact) Hours:

| Туре                     |       | Duration |
|--------------------------|-------|----------|
| Lecture                  |       | 39       |
| Seminars/Tutorials       |       |          |
| Laboratory               |       |          |
| Field Experience         |       |          |
| Other (s <i>pecify):</i> |       |          |
|                          |       |          |
|                          | Total | 39       |

Grading System: Letter Grades 🛛 Percentage 🗌 Pass/Fail 🗌

Satisfactory/Unsatisfactory 
Other 
Other

Specify passing grade: 50%

#### Evaluation Activities and Weighting (total must equal 100%)

|               |     | Lab Work: %        | Participation: 15%<br>Questions asked in the<br>lecture. | Project: | % |
|---------------|-----|--------------------|----------------------------------------------------------|----------|---|
| Quizzes/Test: | 20% | Midterm Exams: 30% | Final Exam: 35%                                          | Other:   | % |

### **TEXT(S) AND RESOURCE MATERIALS**

Provide a full reference for each text and/or resource material and include whether required/not required.

Linear Algebra and its Applications, Latest edition, David C. Lay, Pearson Addison Wesley

| COURSE TOPICS                     |                                                                                                                                                                                                                                                                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List topics and sequence covered. |                                                                                                                                                                                                                                                                                                      |
| Week                              | Торіс                                                                                                                                                                                                                                                                                                |
| Week 1                            | Matrices; Matrix Addition; Scalar Multiplications; Transpose, Linear<br>Combinations; Matrix Equations; Applications.<br>Row-Column Product and General Matrix Product; Matrix Vector<br>Product and its Relation to Linear Combinations and Linear Systems;<br>Properties of Matrix Multiplication. |
| Week 2                            | Matrix Multiplication Continued; Vectors in R2 and R3; Geometric<br>Method of Vector Addition; Subtraction; Scalar Multiplication;<br>Linear Combinations; Span. Subspaces of R2 and R3<br>Vector Equation and Parametric Equations of Lines and Planes.                                             |
| Week 3                            | Inner Product, Length, Distance, Angle and Orthogonality;<br>Scalar Equation of a Plane; Projection; Distance of a Point from a<br>Line/Plane; Orthogonal and Orthonormal Sets of Vectors                                                                                                            |
| Week 4                            | Matrix Transformations: Determine the Matrices that Describe                                                                                                                                                                                                                                         |



### **COURSE OUTLINE**

|         | Rotation, Shear, Dilation or Contraction and Reflection in R2<br>Explain the Terms Domain, Codomain, Standard Matrix, Kernel,<br>Range, One-to-One, Onto, Linearity in Terms of these transformations<br>Standard Matrix for a Linear Transformation from Rn to in Rm.<br>Composite of Linear Transformations |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 5  | Transformations Continued                                                                                                                                                                                                                                                                                     |
| Week 6  | Solving Linear Systems by Row-Reduction, Existence and Uniqueness of Solutions; Rank of a Matrix.                                                                                                                                                                                                             |
| Week 7  | Applications of Systems: Polynomial Interpolation; Balancing<br>Chemical Equations; Leontieff's Exchange Model; Network Flow<br><b>Midterm Exam</b>                                                                                                                                                           |
| Week 8  | Applications of Systems: Find the Inverse of a Matrix; Solve<br>Problems involving Linear Combinations; Subspaces of Rn; Linear<br>Dependence / Independence; Kernel and Range of Linear Transformations;<br>Conditions for being 1-1; onto; Invertible; Inverse of a Linear Transformation.                  |
| Week 9  | Applications Continued; Basis and Dimension: Row Space; Column<br>Space and Null Space of a Matrix; Subspaces of Rn, Coordinates of a Vector<br>Relative to a Basis.                                                                                                                                          |
| Week 10 | Calculate Determinants using Cofactor Expansion; Row Operations and Column Operations; Properties of Determinants                                                                                                                                                                                             |
| Week 11 | Determinants Continued; Applications of Determinants: Cramer's Rule, Adjoint Formula for Matrix Inverse, Area and Volume.                                                                                                                                                                                     |
| Week 12 | Eigenvalues and Eigenspaces of a Square Matrix; Diagonalization of a Square Matrix, Applications of Diagonalization.                                                                                                                                                                                          |
| Week 13 | Gram-Schmidt Process for Finding an Orthonormal Basis for a<br>Subspace Coordinates Relative to an Orthogonal Basis; Determine<br>the Set of Least-Squares Solutions of a Given Inconsistent Linear System                                                                                                    |
| Week 14 | FINAL EXAM                                                                                                                                                                                                                                                                                                    |

### NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: <u>bctransferguide.ca</u>

Last Revised: September 2024 Last Reviewed: September 2024