COURSE OUTLINE

Effective: Spring 2022

COURSE INFORMATION					
Course Title: Introduction to Computer Systems		Course Number: CSCI 250		Credits: 3	
Total Weeks: 14 (Fall, Spring) 12 (Summer)	Total Hours: 39	Course Level:	☐ First Year ☐ New ☐ Replacement	☑ Second Year☐ Revised CourseCourse	
Department: Computer Science	Department Head: M. O'Connor	Former Course C	ode(s) and Numb	er(s) (if applicable): N/A	
Pre-requisites (If there are no prerequisites, type NONE): CSCI 150					
Co-requisite Statement (List if applicable or type NONE): NONE					
Precluded Courses: N/A					

COURSE DESCRIPTION

This course focuses on computer systems and low-level programming. The major topics are the relationship between the computer architecture (the hardware) and the applications that run on it (the software), and the issues that influence the design of both. Programs will be written in both C and x86-64 assembly and may involve some GNU tools in the Linux environment. We will explore how instructions are encoded and executed and how binary data types are encoded and interpreted by computer hardware, and how these matters relate to the performance and reliability of applications.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Machine learning programs
- Representation of symbolic and numeric data
- Representation of instructions (instruction set architecture)
- Machine code optimization
- Basic digital systems
- CPU organization
- Memory organization
- Threads and synchronization (time permitting)

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре		Duration	
Lecture	39		
Seminars/Tutorials			
Laboratory			
Field Experience			
Other (specify):			
	Total	39	

COURSE OUTLINE

Grading System:	Letter Grades ⊠	Percentage \square	Pass/Fail □	Satisfactory/Unsat	cisfactory \square	Other \square	
Specify passing grade: 50%							
Evaluation Activities and Weighting (total must equal 100%)							
		1 111				24	

Assignments:	5%	Lab Work: %	Participation:	5%	Project: %
Specify number of, value and nature of assignment			Specify nature of participation:		Specify nature of project:
Quizzes/Test:	20%	Midterm Exam: 25%	Final Exam: 45%		Other: %

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Computer Systems Mastering Engineering with Pearson eText -- Standalone Access Card

Computer Systems: A Programmer's Perspective, 3/E, Randal E. Bryant, David R. O'Halloran, Pearson, 2016, 9780134071923. Textbook can be ordered directly online from Pearson or from the College bookstore.

.

COURSE TOPICS

List topics and sequence covered.

Week 1 Introduction to the Computer Systems

Week 2 Representation and Manipulation Information

Week 3 Machine-Level Representation of Program

Week 4 Processor Architecture

Quiz 1

Week 5 Optimizing Program Performance

Week 6 The Memory Hierarchy

Week 7 Midterm

Week 8 Linking

Week 9 Exceptional Control Flow

Week 10 Virtual Memory

Week 11 System Level IO

Week 12 Network Programming

Week 13 Concurrent Programming

Week 14 Final Exam

COURSE OUTLINE

NOTES

1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies

2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca

Last Revised: January 2022 Last Reviewed: September 2024