

Effective: Spring 2023

COURSE INFORMATION

Course Title:	Introduction to Com	outer Science & Programming II	Course Number:	CSCI 125	Credits: 4
Total Weeks:	14 (Fall, Spring) 12 (Summer)	Total Hours: 65	Course Level:	☑ First Year□ New□ Replacement	□ Second Year ⊠ Revised Course Course
Department:	Computer Science	Department Head: M. O'Connor	Former Course C	ode(s) and Numb	er(s) (if applicable):
Pre-requisites (if there are no prerequisites, type NONE): PREC 12 or equivalent and CSCI 120					

Co-requisite Statement (List if applicable or type NONE): NONE

Precluded Courses: N/A

COURSE DESCRIPTION

This course is a thorough introduction to computer science and computer programming, suitable for students with some computer science background. It is designed for students who will major in computing science or a related program. Students will learn fundamental concepts and terminology of computer programming and acquire basic programming skills in the Java programming language. Topics covered are: primitive and abstract data types, elementary data structures, fundamental algorithms, algorithm analysis, basic object-oriented programming and software design, specification and program correctness, and historical aspects of computing science.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Cite some historical facts of computer science and programming.
- Demonstrate how to choose primitive data types appropriately.
- Know the difference between primitive data types and reference data types.
- Describe and apply techniques to document programs.
- Use appropriate tools for software development
- Develop, test, and evaluate programs
- Use good and defensive programming style
- Demonstrate how to use control structures appropriately.
- Demonstrate how to use text files for input and output.
- Know how to construct safe programs.
- Explain and use simple abstract data types such as list, stack and queue.
- Demonstrate how to design and use classes.
- Demonstrate how to use modeling tools such as UML, for object-oriented design.
- Develop object-oriented programming solutions
- Know data structures from the Java Collections API such as arrays, lists and dictionaries.
- Demonstrate how to use single and multi-dimensional arrays.
- Know and analyze fundamental searching and sorting algorithms.
- Explain and apply the concepts of Object-Oriented Programming.
- Define and use recursive algorithms for problem solving.

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре		Duration
Lecture		39
Seminars/Tutorials		
Laboratory		26
Field Experience		
Other (s <i>pecify):</i>		
	Total	65

Grading System: Letter Grades \boxtimes Percentage \square Pass/Fail \square

Satisfactory/Unsatisfactory
Other
Other

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments:	5%	Lab Work:	15%	Participation:	%	Projects:	15%
Review Questions: 3%						Midterm Projec	t: 5%
Review Quizzes: 2%						Final Project: 10	0%
Quizzes/Test:	%	Midterm Exams: 30%		Final Exam: 35%		Other: 9	%
		Midterm 1: 15%					
		Midterm 2: 15%					

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Tony Gaddis, Godfrey Muganda: Starting Out with Java: From Control Structures through Data Structures, 4th Edition. Pearson. 2019. ISBN 013478796X • 9780134787961.

COURSE TOPICS

List topics and sequence covered.

Week	Торіс
Week 1	Introduction to Java, OOP, and Program Design
Week 2	Primitive data types and their operations
Week 3	Decision and loop control structures,
Week 4	File input and output
Week 5	Methods
Week 6	Midterm Exam 1 / Introduction to Classes and Objects, UML diagrams

COURSE OUTLINE

Week 7	Introduction to Arrays and the ArrayList Class
Week 8	Sorting and Searching Algorithms, Algorithm Analysis
Week 9	More about Classes and Objects
Week 10	Midterm Exam 2 / Test Processing and Wrapper Classes
Week 11	Inheritance and Polymorphism
Week 12	Exceptions
Week 13	Recursion / Abstract Data Types
Week 14	Final Exam

NOTES

1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies

2. To find out how this course transfers, visit the BC Transfer Guide at: <u>bctransferguide.ca</u>

Last Reviewed:September 2024Last Revised:January 2023