COURSE OUTLINE

Effective: Fall 2024

COURSE INFO	ORMATION								
Course Title:	Introduction to Chem	nistry with Laboratory	Course Number: CHEM 100	Credits: 4					
	14 (Fall, Spring) 12 (Summer)	Total Hours: 91	Course Level: ⊠ First Year ☐ New ☐ Replacement	☐ Second Year ☐ Revised Course Course					
Department:	Sciences	Department Head: S. Girdhar	Former Course Code(s) and Nu	mber(s) (if applicable): N/A					
Pre-requisites (If there are no prerequisites, type NONE): PREC 12 or MATH 100 or MATH 120 or equivalent. Students with credit for any university chemistry course may not take this course for credit.									
Co-requisite Statement (List if applicable or type NONE): NONE									
Precluded Courses: N/A									

COURSE DESCRIPTION

This course introduces the general concepts of chemistry, including atomic structure, stoichiometry, chemical bonding, liquids and solutions, kinetics, and equilibrium. This course includes a laboratory component. No prior knowledge of chemistry is required for this course.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Demonstrate a firm grasp of the knowledge of chemistry, as specified in course syllabus and objectives.
- Identify the relationships between chemistry and other science disciplines, and the applications of chemistry in society. Identify the impact of chemistry on our life and the world around us.
- Solve chemistry problems using mathematical and computational tools.
- Understand and use the correct vocabulary necessary to communicate specific chemical information to other chemists and non-chemists.
- Demonstrate competency in the laboratory skills: knowledge of the appropriate equipment and techniques, and follow the proper procedures and regulations for safe handling when using chemicals.
- Be able to understand the specific instructions given to carry out experiments, make observations and collect the necessary data with the appropriate precision and accuracy, then in a report process the data and determine and assess the results.
- Understand the bases of the electronic structure of atoms and its relationship to the periodic table of the elements.
- Be able to identify the types of molecular bonds and shapes of simple molecules.
- Understand the factors governing the kinetics of chemical reactions.
- Comprehend and test the equilibria of various systems, both homo- and heterogeneous, as related to gases, acids, and bases.
- Understand the fundamentals of oxidation-reduction reactions. Be able to recognize and balance a redox reaction.

COURSE OUTLINE

ı	N	IC.	TI	2	П	C.	П	n	N	Α	N	n	G	R	Δ	n	IN	16	3
	ľ	uJ.		v	u	·		u	AN.		IV	טו	u	п	м	"	411	v٧	9

Instructional (Contact) Hours:

Туре	Duration
Lecture	52
Seminars/Tutorials	
Laboratory	39
Field Experience	
Other (s <i>pecify):</i>	
Tota	91

Grading System:	Letter Grades 🛛	Percentage \square	Pass/Fail 🗌	Satisfactory/Unsatisfactory	Other \square
-----------------	-----------------	----------------------	-------------	-----------------------------	-----------------

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments:	15%	Lab Work:	25%	Participation:	8%	Project:	%
Quizzes/Test:	%	Midterm Exams: Midterm 1	32% 15%	Final Exam:	31%	Other:	%
		Midterm 2 Practice Midterms	15% 2%				

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

OpenStax College. (2021). Chemistry. https://openstax.org/details/books/chemistry-2e

COURSE TOPICS

List topics and sequence covered.

Week	Topic	Chapter
Week 1	Scientific Method, Matter Measurements and Calculations	1
Week 2	Matter, molecules and ions	2
Week 3	Chemical nomenclature	2
Week 4	Modern atomic theory	6

COURSE OUTLINE

Week 5	Midterm 1 Chemical Composition	1, 2, 6 3
Week 6	Chemical composition	3
Week 7	Chemical equations and types of reactions	4
Week 8	Reaction Stoichiometry and titrations	4
Week 9	Midterm 2	3, 4
Week 10	Energy and heat, calorimetry	5
Week 11	Phase transitions, heating/cooling curves	10
Week 12	Chemical bonding, Lewis structures	7
Week 13	Equilibrium	13
Week 14	FINAL EXAM	

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca

Lab Experiments:

- 1. Intro to Lab Equipment/ The Thickness of a Thin Aluminum Sheet
- 2. Physical Separation of Matter/ Chemical Properties and Change
- 3. Types of Chemical Reactions
- 4. Moles of Iron and Copper
- 5. Calculations with a Chemical Reaction
- 6. Preparation of Standard Solutions and Use of a Spectrophotometer to Measure the Concentration of and Unknown Solution
- 7. Factors Affecting Reaction Rate
- 8. Investigating Chemical Equilibrium
- 9. Acid-Base Titration
- 10. Oxidation-Reduction Reactions

Last Reviewed: September 24, 2024 **Last Revised:** September 24, 2024